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Sleep dynamics: A self-organized critical system
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In psychiatric and neurological diseases, sleep is often perturbed. Moreover, recent works on humans and
animals tend to show that sleep plays a strong role in memory processes. Reciprocally, sleep dynamics
following a learning task is modified �Hubert et al., Nature �London� 02663, 1 �2004�, Peigneux et al., Neuron
44, 535 �2004��. However, sleep analysis in humans and animals is often limited to the total sleep and wake
duration quantification. These two parameters are not fully able to characterize the sleep dynamics. In mam-
mals sleep presents a complex organization with an alternation of slow wave sleep �SWS� and paradoxical
sleep �PS� episodes. Moreover, it has been shown recently that these sleep episodes are frequently interrupted
by micro-arousal �without awakening�. We present here a detailed analysis of the basal sleep properties
emerging from the mechanisms underlying the vigilance states alternation in an animal model. These properties
present a self-organized critical system signature and reveal the existence of two W, two SWS, and a PS
structure exhibiting a criticality as met in sand piles. We propose a theoretical model of the sleep dynamics
based on several interacting neuronal populations. This new model of sleep dynamics presents the same
properties as experimentally observed, and explains the variability of the collected data. This experimental and
theoretical study suggests that sleep dynamics shares several common features with critical systems.
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I. INTRODUCTION

Nowadays, sleep dynamics is considered as emerging
from complex interactions between neuronal populations of
many brain regions, located in hypothalamus and in brain-
stem. Indeed, until now, the alternation between sleep and
wakefulness has been viewed as a sleep-wake “latch” system
�1,2� or as a competition between neuronal populations �3,4�
presenting mutual inhibitions. However, these kinds of sys-
tems providing cyclic rhythms do not present memory prop-
erties, and cannot evolve. In other words, they are not able to
produce the large temporal variability observed in physiol-
ogy. Consequently, they cannot exhibit exceptional events, as
for instance a long or a very short wakefulness period. Re-
cent works �5–7� tend to address a new concept of sleep
dynamics based on the self-organized critical systems theory
initiated in several physics domains by Per Back �8�. Inter-
estingly, the wake and sleep duration and the recurrence in-
terval of a vigilance state, that is the time interval between
two consecutive episodes of the same nature �that we define
as recurrence interval�, follow a power-law P�t�� t−� or ex-
ponential p�t��e−t/� statistical distribution, called invariant
and finite scale process, respectively. In contrast to works
focused on the common scale-invariant patterns of sleep-
wake transitions across mammalian species, we investigate
in-depth the sleep architecture. The temporal sleep organiza-
tion is more complex than is thought, because sleep is not
restricted to a two states “wake-sleep” system. Indeed, the
minimum number of states to describe the sleep architecture
in mammals is equal to three. These states are named Wake
�W�, slow-wave sleep �SWS�, and paradoxical sleep �PS� or
rapid eye movement sleep �REMs�, respectively. In humans,
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SWS is composed of four levels of SWS, implying a more
complex sleep architecture. For the sake of clarity, we focus
our attention on the best known animal model, the rat. In-
deed, in the rat, the three above-cited states are sufficient to
describe the sleep dynamics as represented Fig. 1�a�. Note
that the results of Ref. �6�, indicating common behavior char-
acteristics between species, allow us to extrapolate our re-
sults to humans. The present paper is organized as follows:
In Sec. II, we present the experimental methods, while in
Sec. III, we present our statistical investigations, and extract
the properties of a basal sleep. Section IV presents a new
theoretical model displaying the same properties as experi-
mentally observed. Finally, Sec. V is devoted to some con-
cluding remarks and possible future investigations.

II. EXPERIMENTAL METHODS

We analyze episode duration of the three sleep states W,
SWS, and PS in a rat, during the diurnal period �the main
sleeping period�. The sleep states are scored following the
electroencephalography �EEG�, electromyography �EMG�,
and electrooculography �EOG� recordings �see Fig. 2�. Our
polysomnographic recordings have been performed with ten
24-h recordings from ten adult male Sprague-Dawley rats
�weight: 300 g, age: 3 months� with 12-h period of light
from 7 a.m. to 7 p.m. and constant temperature: 23 °C. Our
data analysis is realized between 7 a.m. and 7 p.m. We adopt
the usual experimental conditions and scoring criteria. Vigi-
lance states were discriminated with the aid of EEG, EOG,
and EMG recordings. Polygraphic recordings and sleep scor-
ing EEG, EOG, and EMG recordings were collected on a
computer via a CED interface using the Spike 2 software
�Cambridge Electronic Design�. The criteria used to distin-
guish between SWS, PS, and W were the following: wake-

fulness was characterized by a desynchronized EEG, PS was
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characterized by a large increase in power of theta activity
�4–8 Hz� accompanied by muscle atonia, and SWS was
characterized by large amplitude delta oscillations �1–4 Hz�
in the EEG. Sleep stages are scored by dividing sleep record-
ings into nonoverlapping epochs of the same duration. A
single sleep stage is assigned for each epoch. Polygraphic
recordings were analyzed with 5-s epochs. If more than one
sleep stage occurs within an epoch, the majority sleep stage
is scored as the stage for the whole epoch leading to an
hypnogram as represented Fig. 1�a�. Note that this scoring
rule applied to a too large epoch analysis ��30 s� leads to an
hypnogram with artifacts giving rise to a Gaussian statistics

FIG. 1. �Color online� Sleep dynamics: �a� Typical hypnogram
describing the sleep architecture of a rat during the diurnal period
�sleeping period for the rat� represented over a period of 104 s for
the sake of clarity and exhibiting six possible transitions between
the three different states, PS �paradoxical sleep�, W �wake�, and
SWS �slow waves sleep�. �b� Transitions probabilities between vigi-
lance states following a Pareto diagram, from which we can extract
the main sleep trajectories A and B �represented upright�. One
notes, the very rare transitions W→PS and PS→SWS, and consis-
tency �very low standard deviation� of the results obtained from 10
rats.
in accordance with the central limit theorem. Thus, in order
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to extract the statistical properties of the sleep dynamics, it is
important to choose an adapted time scale to analyze EEG,
EMG, and EOG recordings. A systematic scale analysis re-
duction allowed us to determine the limit �5 s� under which
it is useless to descend and over which the time resolution is
damaged. We plot our data onto a three-state diagram �W,
SWS, and PS�.

III. STATISTICAL RESULTS

Sleep dynamics are characterized by two mains features:
�i� the vigilance states alternation, �ii� the vigilance states
duration. Thus, we have first performed the analysis of the
transition probability between vigilance states. The transi-
tions probability bargraph represented in Fig. 1�b� presents a
Zipf-like power law �i.e., a power law between the probabil-
ity versus the sorting rank emerging from a Pareto diagram�,
suggesting a critical character of the studied system. This
analysis leads to identifying two sleep trajectories �see Fig.
1�b��. The first trajectory links the W state to the SWS state,
the SWS state to the PS state, and finally the PS state to the
W state �cycle A�. The second trajectory connects the W state
to the SWS state and reciprocally �cycle B�. One notes the
very weak weight of the W to PS, and PS to SWS transitions.
Sleep dynamics is not restricted to the transitions between
vigilance states. Indeed, the actual sleep complexity resides
in the vigilance states’ duration. In order to extract the tem-

FIG. 2. �Color online� Polygraphic recordings of the three dif-
ferent vigilance states. �a� Wake state is associated with a weak
EEG amplitude, a strong muscular tonicity, and a strong ocular
activity. �b� Slow waves sleep is associated with a strong EEG
amplitude, a reduced muscular tonicity, and no ocular activity. �c�
Paradoxical or REM sleep is associated with an EEG, and EOG
close to the wake state with no muscular tonicity.
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poral properties of the different vigilance states, we have
performed statistical analysis of their duration, as shown in
Fig. 3. The duration probability densities of W and PS states
represented Fig. 3, follow a power law with critical expo-
nents equal to �W

d =1.98 for W and �PS
d =1.16 for PS, respec-

tively. These critical exponents are the slopes of the double
logarithmic axis of the graph represented on the right side of
Fig. 3. The SWS episodes duration distribution presents a
decreasing exponential also called finite scale characteristic,
indicating that the SWS duration scale is equal to �SWS

d

=95 s. This duration scale is determined by the slope of the
semi-logarithmic data representation located on the right side
of Fig. 3. In order to prove the robustness of our investiga-
tions, we have equally compared the individual characteris-
tics of each animal with the merged data obtained for all
animals. Figure 4 shows the properties of a randomly chosen
animal matching accurately with the merged data obtained
for all animals represented by the continuous lines.

Note that the nonparametric Kolmogorov-Smirnov test
�which does not require the assumption that the population is

FIG. 3. �Color online� Episode duration probability density in lin
side�: �W� probability density of the wake duration following a pow
the slow waves sleep duration following a decreasing exponential la
of the paradoxical sleep duration following a power law with a critic
to PS. Each probability density graph results from the hypnograms
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normally distributed� applied to the data from individual re-
cordings reveals that we cannot reject the null hypothesis
that W, SWS, and PS states of each subject are drawn from
the same distributions, suggesting that one can pool all data
together to improve the statistics without changing the global
distribution.

As shown in Fig. 1�b� representing the two possible sleep
trajectories, two paths exist to reach the W state depending
on whether the preceding vigilance state is a SWS or PS state
�see Fig. 6�. Also, two ways exist to leave the SWS state
depending on whether the next vigilance state is a W or PS
state �see Fig. 5�. Thus, we have to construct the duration
distributions of the W state when the preceding state is a
SWS state or a PS state �see Fig. 6�. Also, we have equally to
construct the duration distribution of the SWS state when the
next state is a W state or a PS state �see Fig. 5�. One notes
the presence of two distinct duration distributions for the W
and the SWS episodes. The duration probability density of
the W state is the combination of the power law distributions
of critical exponents equal to �PS=1.54 and �SWS=2, de-

lot �left side� and double logarithmic or semilogarithmic plot �right
w with a critical exponent �W

d =1.98, �SWS� probability density of
esenting a constant time scale �SWS

d =95 s. �PS� Probability density
ponent �PS

d =1.16. Note the small hump in the tail related to the W
ysis of 10 rats during 12 h.

FIG. 4. �Color online� Statistical properties of
a randomly chosen animal, compared to the
merged data obtained for all animals. From top to
bottom: probability densities of the wake �W�,
paradoxical sleep �PS�, and slow waves sleep
�SWS�. The red curves represent the results from
the data of Fig. 3 �all animals�, superimposed to
the data of a randomly chosen animal showing
the results sturdiness.
ear p
er la
w pr
al ex
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pending on whether one comes from a PS or SWS episode,
respectively. The duration probability of the SWS state is the
combination of an exponential and Poisson-like distribution
of parameters �W=85 s and �PS=47.6 S, depending on
whether SWS episodes are followed by a W or PS episode,
respectively. Altogether, these results quantify some aspects
of the sleep dynamics, in terms of duration and recurrence.
Also, our results indicate that the classical proposed models
based on a sleep architecture with mean duration and mean
period are not appropriate to describe the actual temporal
dynamics �variability� of vigilance states during sleep, and
consequently lead to an erroneous interpretation of the sleep
dynamics and therefore of its functions. Thus, the statistical
analysis presented here suggests that the vigilance states’ al-
ternation during sleep emerges from a SOC system, like the

FIG. 6. �Color online� Duration probability density Pw of a
wake episode following a SWS �dashed line, �� or PS �continuous
line, �� episode. Dashed line and continuous line presents a critical
exponent equal to �sws=2 and �ps=1.54, respectively, indicating
that two structures or mechanisms share the wake state. Inset: A
double logarithmic representation shows the two straight lines char-

FIG. 5. �Color online� Duration probability density PSWS of a
SWS episode preceding a W �red curve, �� or a PS �black dashed
curve, �� episode. The red curve presents a time constant �w

=85 s, while the black dashed one presents a time constant �ps

=47.6 s, indicating that two structures or mechanisms share the
slow waves sleep state.
acterizing the data power law properties.
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paradigmatic sand pile model �8,9�. Indeed, a certain analogy
exists between the location and the intensity of an avalanche
in a sand pile and the vigilance state �location� and its dura-
tion �intensity�, respectively, during a sleep period. The next
section is devoted to a SOC model construction of the sleep
architecture.

IV. MODEL DESCRIPTION

Our statistical investigations described in Sec. IV show
that the SWS episodes follow two different finite scale dura-
tion laws depending on the sleep trajectory �A and B see Fig.
1�. Moreover, depending on the sleep trajectory, A or B, one
distinguishes two different W duration power laws. The PS
duration distribution presents a power law structure with a
small hump located on the distribution tail. This small hump
related to the rare W to PS transitions presents a mean dura-
tion equal to 120±10 s and does not play a crucial role in
sleep dynamics because of its rarity and its small size in
comparison with the whole of the duration distribution of PS,
and consequently may be neglected in our model. These sta-
tistical results suggest that the vigilance states’ alternation
during sleep behaves as a SOC system similar to the para-
digmatic sand pile model, where an episode of a vigilance
state may be assimilated to an avalanche. The avalanche lo-
cation may be viewed as the nature of the vigilance state �W,
SWS, or PS�, while the episode duration of the vigilance
state may be considered as the avalanche intensity. Our sta-
tistical results described above �see Fig. 1� show that transi-
tions between vigilance states �W→PS, and PS→SWS� are
very rare and can be neglected in comparison with the other
transitions. Moreover, we have shown that the duration dis-
tribution of the SWS episode before a PS episode is different
from the duration distribution of the SWS episode before a
W episode. In addition, we have shown that the W duration
distribution is different and depending on the preceding epi-
sode is a SWS or PS a episode. From these results, we have
constructed a SOC model with five neuronal populations �see
Fig. 7�. The populations responsible for the W state mainte-
nance are labeled W and w, respectively, while the two popu-
lations responsible for the SWS state maintenance are la-
beled SWS and sws, respectively. Finally the population
responsible for the PS state maintenance is labeled PS. At
this step of the model description, we would like to underline
that each neuronal population described above is associated
to a vigilance state maintenance. The assumption of the
present model is to consider that the above-described neu-
ronal populations are not the single possible vectors of the
vigilance states’ alternation, since among a similar neuronal
population we can find excitatory and inhibitory neurons,
�10–12� and furthermore, as has been suggested in Refs.
�13,14�, neuromediators can play an inhibitory as well as
excitatory role. Efferent arrows from a neuronal population
�see Fig. 7� to others represent the possible neuronal popu-
lation activation trajectories from the most active population.
It is important to note at this level of description that the
arrows of Fig. 7 are not probability weighted, and that tran-
sitions or neuronal population activation emerge from simple

comparison of neuronal populations activities �winner take
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all�. Neuronal populations’ activity is obtained from a ran-
dom pull for each neuronal population efferently connected
by an arrow to the most active current neuronal population.
Others neuronal populations �not efferently connected by an
arrow� are considered to be hyperpolarized �by hormonal
species, or neuromediators,¼�. In contrast to the current idea
for which the vigilance states’ alternation results from only
mutual inhibitory and excitatory relationship between the
neuronal populations involved in the sleep states’ mainte-
nance, the random drawing exposed above allows us to
gather the role of the neuronal populations involved in the
sleep states’ maintenance and the rest of the brain. Indeed,
neuronal populations in the brain are directly or indirectly
connected to others far and/or close to neuronal populations.
From this remark it is not possible to reduce sleep states’
dynamics to mutual inhibitory and excitatory neuronal popu-
lations isolated from the rest of the brain. In the present
model, other neuronal populations in the brain are considered
as playing a strong role in the vigilance state alternation,
since different areas can stimulate or inhibit the various neu-
ronal populations responsible for a vigilance state mainte-
nance. Moreover, our model also integrates the possible in-
hibitory and excitatory relationship between neuronal
populations responsible for the sleep states’ maintenance.
Figure 8 shows the results of our numerical simulations
which exhibit the same properties as experimentally ob-
served. In particular, our model presents the same range or-
der of critical parameters, the same time scale, as well as
regarding the vigilance states’ duration, as the transition
probabilities. It is important to remember here that no tran-
sition parameter value has been incorporated in our model
voluntary. These numerical results indicate that our SOC
model exhibiting the same statistical properties as experi-
mentally observed, is another way to model the sleep dynam-

FIG. 7. �Color online� Transition map model between the differ-
ent “neuronal species” implied in the sleep dynamics. One notes
first the existence of two wake �w and W� and two slow waves sleep
�sws and SWS� structures. This interaction ring network shows mu-
tual interactions between two consecutive agents, except between
the nodes sws, PS, and W, representing the paradoxical sleep way
“A.” Second, the nonparadoxical way “B” is a complex connections
system, giving rise to the sleep self-organized criticality.
ics and allows one to characterize accurately the sleep archi-
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tecture, and consequently is a genuine tool to determine the
sleep functions. This model involves the notion of contin-
gency between the conformation of the system �neuronal
populations responsible for the maintenance of their corre-
sponding vigilance state� and the intervention of a perturba-
tion or excitation coming from other brain areas which can
induce a strong change in the system conformation, whatever
the perturbation size. This suggests that the sleep dynamics
time course is not predictable. Only the statistical properties
of SOC systems can be determined. The construction of a
simple model including the most relevant ingredients of the
sleep architecture allows one to compare the theoretical
properties to the experimental ones and consequently to de-
termine the mains characteristics of the studied system and

FIG. 8. �Color online� Statistical results obtained from numeri-
cal simulation of the proposed model. �a� Vigilance states duration
probability density, displaying the same characteristics as experi-
mentally observed �W

m =1.9, �PS
m =1.9, �SWS

m =95 s. �b� Probability of
transition between the different vigilance states, presenting the same
range order as the experimental results �see Fig. 1�b��.
how the different neuronal populations interact.
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This model leads to a new concept of sleep working, in
which all the brain is considered, unlike other sleep models
�1–3�.

V. DISCUSSION

In summary, we have shown in this article that the sleep
dynamics in the best known animal model of sleep share
many similarities with a typical SOC system. Indeed, in
mammals, sleep has a complex architecture which involves a
minimum of three vigilance states W, SWS, and PS. In con-
trast to the early descriptions of sleep cycle �15� the analysis
of hypnograms in animals and in humans with short epochs
has revealed the frequency of very short ��1 min� episodes
of PS and W during sleep. Sleep, as critical systems, exhibits
invariant or finite scale behaviors meaning that big and small
events have the same significance. Our results indicate that
these short episodes are not a noise superimposed to a basic
periodic pattern. The fact that sleep dynamics shares many
similar features with SOC systems is important in terms of
understanding system biology. Indeed this temporal organi-
zation of sleep should be split from the circadian and respi-
ratory rhythms which are strictly periodic. Although our re-
sults are based on experiments in the rat, the study of Lo �6�
allows us to extrapolate our findings to other species, includ-
ing humans. Frequently it has been hypothesized that the
neuronal populations underlying these rhythms may share
similar pacemaker mechanisms. In contrast, our results sug-
gest that the neuronal populations involved in sleep present a
different behavior. These temporal analyses combined with
the analysis of the transition probabilities between vigilance
states allowed us to construct a critical theoretical model of
the activity of neuronal populations underlying the vigilance
state induction and maintenance. First, our model presents
the same statistical properties of the sleep dynamics; that is:
the same duration of vigilance state episodes and recurrence
interval variability, as well as the same distribution transition
probabilities between vigilance states. Thus, this model
which is a new way to accurately describe sleep dynamics is
able to exhibit the variability and the statistical distributions
�8� Per Bak, How Nature Works �Springer, Berlin�.
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experimentally observed. The second main feature of this
model is that the activity of a neuronal population respon-
sible for a vigilance state maintenance contributes to the in-
hibition of the other neuronal populations associated with the
other vigilance states. Thus the current active neuronal popu-
lation is not the only population that contributes to the vigi-
lance state maintenance. Indeed, our model suggests that the
vigilance states’ alternation depends mainly on events com-
ing from other neuronal populations located in brainstem and
hypothalamus or even other brain areas which activate or
inhibit these populations responsible for the vigilance states’
maintenance. One can compare these neuronal interactions to
a sand grain which falls on a sand pile in critical regime.
Depending on where the grain falls this one excites a chain
of force and triggers or does not trigger an avalanche in a
certain area of the sand pile. In this comparison, the sand
grains play the role of the neurons, the chain of forces rep-
resent the neuronal arborescent of the active neurons of the
rest of the brain in the direction of the populations respon-
sible for the vigilance states’ maintenance. Recently it has
been demonstrated that the propagation of activity in in vitro
neuronal networks behave as a sand pile system �16�. Our
theoretical results suggest that such complex neuronal inter-
actions between different brain areas may underlie the com-
plex temporal architecture of sleep. This remarkable similar-
ity between neuronal interactions in the brain and the sand
pile is also interesting in terms of experimental support and
theoretical description. However, like in a sand pile, where it
is not possible to determine the next avalanche location and
intensity, the prediction of the activation of the next neuronal
population and its duration are not possible. Thus, the sleep
dynamics is driven by a critical state that may allow the
optimum integration of much different information including
body temperature, fasting, glycemia, brain reactivations after
learning. Also, we suggest that the underlying mechanisms
of the sleep temporal organization result from the synchro-
nous activation or deactivation of the neuronal populations
of different brain areas �coding for temperature, glycemia,
etc.�, not only from the activation of the classical neuronal

populations involved in sleep maintenance and induction.
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